Given :

' O ' is the incentre of $\triangle A B C, \mathrm{OA}=\mathrm{AG}, \mathrm{AC}=\mathrm{AF}, \mathrm{OD}=\mathrm{DE}$

Claim :

BEFG is concyclic

Construction :

$\overline{B D}, \overline{C D}, \overline{O C}$ constructed.

Proof:

O is the incentre of $\triangle A B C \Rightarrow \mathrm{~m} \angle O A B=m \angle O A C$
But $m \angle O A B=m \angle G A F$ (opposite angle) $\Rightarrow \mathrm{m} \angle O A C=m \angle G A F$
Now, in $\triangle O A C \& \triangle G A F$ we have $m \angle O A C=m \angle G A F$,
$\mathrm{OA}=\mathrm{AG}$ and $\mathrm{AC}=\mathrm{AF} \Rightarrow \triangle O A C \cong \triangle G A F$ (S-A-S)
$\Rightarrow \mathrm{m} \angle O C A=m \angle A F G$ But $\mathrm{m} \angle O C A=m \angle O C B$ as ' O ' is incentre

Hence $\mathrm{m} \angle A F G=m \angle O C B$
Since $\mathrm{m} \angle D A B=m \angle D A C$ we have $\mathrm{BD}=\mathrm{CD}$
Let $\mathrm{m} \angle B A D=m \angle C A D=\theta \mathrm{m} \angle B C D=\theta \quad$ (Angle inscribed in the same chord)
$\mathrm{m} \angle O C A=m \angle O C B=\beta \Rightarrow m \angle A F G=\beta$
Now the exterior angle $\mathrm{m} \angle C O D=(\theta+\beta)$
$\mathrm{m} \angle O C D=m \angle O C B+m \angle B C D=(\beta+\theta)=(\theta+\beta)$
$\Rightarrow m \angle C O D=m \angle O C D \Rightarrow D O=D C$
$\Rightarrow D O=D C=D B=D E$ (As $D O=D E$ given $)$
Hence we can construct a circle with center.
D and diameter $\overline{O E}$, passing through $\mathrm{B} \& \mathrm{C}$.
$\Rightarrow m \angle O E B=m \angle O C B=\beta$
$\Rightarrow m \angle G E B=m \angle G F B=\beta$
$\Rightarrow B E F G$ are concyclic .
Proved

