Given :

'O' is the incentre of $\triangle ABC$, OA = AG, AC= AF, OD = DE

Claim :

BEFG is concyclic

Construction :

 $\overline{BD}, \overline{CD}, \overline{OC}$ constructed.

Proof:

O is the incentre of $\triangle ABC \implies m \angle OAB = m \angle OAC$ But $m \angle OAB = m \angle GAF$ (opposite angle) $\Rightarrow m \angle OAC = m \angle GAF$ Now, in $\triangle OAC \& \triangle GAF$ we have $m \angle OAC = m \angle GAF$, OA= AG and AC = AF $\Rightarrow \Delta OAC \cong \Delta GAF$ (S-A-S) \Rightarrow m $\angle OCA = m \angle AFG$ But m $\angle OCA = m \angle OCB$ as 'O' is incentre Hence $m \angle AFG = m \angle OCB$ ------(1) Since $m \angle DAB = m \angle DAC$ we have BD=CD Let $m \angle BAD = m \angle CAD = \theta \ m \angle BCD = \theta$ (Angle inscribed in the same chord) $m \angle OCA = m \angle OCB = \beta \implies m \angle AFG = \beta$ Now the exterior angle $m \angle COD = (\theta + \beta)$ $m \angle OCD = m \angle OCB + m \angle BCD = (\beta + \theta) = (\theta + \beta)$ \Rightarrow m \angle COD = m \angle OCD \Rightarrow DO = DC \Rightarrow DO = DC = DB = DE (As DO = DE given) Hence we can construct a circle with center. D and diameter \overline{OE} , passing through B & C. \Rightarrow *m*∠*OEB* = *m*∠*OCB* = β \Rightarrow $m \angle GEB = m \angle GFB = \beta$ \Rightarrow BEFG are concyclic . ----- Proved ****

